
Zentraler Grenzwertsatz für die Binomialverteilung: Optimale Fehlerabschätzung
Author
Participating institute
Institut für Stochastik (STOCH)
Genre
Description
Nach dem Zentralen Grenzwertsatz von de Moivre-Laplace konvergiert die Folge der Verteilungsfunktionen von standardisierten Bin(n,p)-verteilten Zufallsvariablen bei wachsendem n gegen die Verteilungsfunktion der Standardnormalverteilung. Nach einem Satz von G. Pólya ist diese Konvergenz gleichmäßig auf der reellen Achse, und nach einem Satz von A.C. Berry und C.G. Esseen existiert eine obere Schranke für die maximale betragsmäßige Abweichung der entsprechenden Verteilungsfunktionen. In diesem Video werden Ergebnisse der Doktorarbeit von Jona Schulz aus dem Jahr 2016 vorgestellt. Ein Ergebnis ist die Aufstellung einer optimalen Berry-Esseen-Konstanten für die Situation des Satzes von de Moiver-Laplace.
Duration (hh:mm:ss)
00:19:11
Published on
25.04.2019
Subject area
License
Creative Commons Attribution – NonCommercial 4.0 International
Resolution | 1280 x 720 Pixel |
Aspect ratio | 16:9 |
Audio bitrate | 128000 bps |
Audio channels | 2 |
Audio Codec | aac |
Audio Sample Rate | 48000 Hz |
Total Bitrate | 235521 bps |
Color Space | yuv420p |
Container | mov,mp4,m4a,3gp,3g2,mj2 |
Media Type | video/mp4 |
Duration | 1151 s |
Filename | DIVA-2019-263_hd.mp4 |
File Size | 33.889.386 byte |
Frame Rate | 25 |
Video Bitrate | 101417 bps |
Video Codec | h264 |
Media URL
Embed Code