KIT-Bibliothek

Die Formel von der totalen Wahrscheinlichkeit

Autor

Norbert Henze

Beteiligtes Institut

Fakultät für Mathematik (MATH)
Institut für Stochastik (STOCH)

Genre

Lehrmaterialien

Beschreibung

Die Formel von der totalen Wahrscheinlichkeit besagt, dass man die Wahrscheinlichkeit eines Ereignisses B als Summe über j von Produkten der Form P(A_j) P(B|A_j) berechnen kann. Dabei sind die Ereignisse A_1, A_2, .. paarweise disjunkt, und sie bilden eine Zerlegung der Ergebnismenge. In diesem Video wird die Formel hergeleitet und veranschaulicht, und es werden einige konkrete Aufgaben dazu behandelt. In der Schule ist die Formel von der totalen Wahrscheinlichkeit nichts anderes als die sogenannte zweite Pfadregel.

Schlagwörter

Stochastik, bedingte Wahrscheinlichkeit, Formel von der totalen Wahrscheinlichkeit

Laufzeit (hh:mm:ss)

00:15:22

Publiziert am

26.08.2020

Fachgebiet

Mathematik

Lizenz

Creative Commons Namensnennung – Nicht kommerziell 4.0 International

Auflösung 1280 x 720 Pixel
Seitenverhältnis 16:9
Audiobitrate 128000 bps
Audio Kanäle 2
Audio Codec aac
Audio Abtastrate 48000 Hz
Gesamtbitrate 238642 bps
Farbraum yuv420p
Container mov,mp4,m4a,3gp,3g2,mj2
Medientyp video/mp4
Dauer 922 s
Dateiname DIVA-2020-635_hd.mp4
Dateigröße 27.492.919 byte
Bildwiederholfrequenz 25
Videobitrate 104540 bps
Video Codec h264

Mediathek-URL

Embed-Code