
Die Cauchy-Verteilung
Author
Participating institute
Fakultät für Mathematik (MATH)
Institut für Stochastik (STOCH)
Genre
Description
Die Cauchy-Verteilung ist nach dem französischen Mathematiker Augustin Louis Cauchy (1789-1857) benannt. In diesem Video wird die Standard-Cauchy-Verteilung C(0,1) als Verteilung des Tangens eines im Intervall von -\pi/2 bis \pi/2 gleichverteilten zufälligen Winkels eingeführt. Als direkte Folgerungen ergeben sich Verteilungsfunktion und Dichte der Standard-Cauchy-Verteilung. Die allgemeine Cauchy-Verteilung mit Parametern a und b, wobei b positiv ist, ergibt sich durch die affine Transformation X = bX_0 + a aus einer C(0,1)-verteilten Zufallsgröße X_0. Die Cauchy-Verteilung besitzt keinen Erwartungswert. Der Parameter a ist der Median der Verteilung, und b ist gleich dem halben Quartilsabstand. Am Ende des Videos werden noch weitere Eigenschaften der Cauchy-Verteilung angegeben.
Keywords
Stochastik, Cauchy-Verteilung, Median, Interquartilsabstand
Duration (hh:mm:ss)
00:19:25
Published on
26.08.2020
Subject area
License
Creative Commons Attribution – NonCommercial 4.0 International
Resolution | 1280 x 720 Pixel |
Aspect ratio | 16:9 |
Audio bitrate | 128000 bps |
Audio channels | 2 |
Audio Codec | aac |
Audio Sample Rate | 48000 Hz |
Total Bitrate | 211588 bps |
Color Space | yuv420p |
Container | mov,mp4,m4a,3gp,3g2,mj2 |
Media Type | video/mp4 |
Duration | 1165 s |
Filename | DIVA-2020-636_hd.mp4 |
File Size | 30.806.754 byte |
Frame Rate | 25 |
Video Bitrate | 77488 bps |
Video Codec | h264 |
Media URL
Embed Code