KIT-Bibliothek

KCDS Virtual Open House - Project 04 Exploring the Potential of machine learning methods for improving operational hydrological forecasting and prediction (EPOforHydro)

The media file is no longer available.

Author

Uwe Ehret, Sebastian Krumscheid

Editor

Angela Hühnerfuß

Participating institute

KIT-Zentrum Mathematik in den Natur-, Ingenieur- und Wirtschaftswissenschaften (KIT-Zentrum MathSEE)
Institut für Wasser und Gewässerentwicklung (IWG)
Scientific Computing Center (SCC)

Genre

Veranstaltung

Description

Meet KIT Graduate School Computational and Data Science in our virtual open house! Find out more about the graduate school and current doctoral projects.

Duration (hh:mm:ss)

00:05:05

Series

KCDS Virtual Open House

Published on

31.03.2023

Subject area

Computer science

License

Creative Commons Attribution – NonCommercial – ShareAlike 4.0 International

Resolution 1280 x 720 Pixel
Aspect ratio 16:9
Audio bitrate 66529 bps
Audio channels 1
Audio Codec aac
Audio Sample Rate 48000 Hz
Total Bitrate 478019 bps
Container mov,mp4,m4a,3gp,3g2,mj2
Duration 304.662000 s
Filename DIVA-2023-28_mp4.mp4
File Size 18.204.285 byte
Frame Rate 25
Video Bitrate 405456 bps
Video Codec h264

Embed Code