KIT-Bibliothek
FAQ Audio-/Videodatei publizieren

KCDS Virtual Open House 2025, Fall edition: Project 01 - Estimation of short-term extremes in air pollution and their drivers

Autor

V. Fasen, Hendrik Andersen

Beteiligte Person

Jan Cermak

Herausgeber

Martin Frank, Uwe Ehret, Angela Hühnerfuß

Beteiligtes Institut

KIT-Zentrum Mathematik in den Natur-, Ingenieur- und Wirtschaftswissenschaften (KIT-Zentrum MathSEE)
Scientific Computing Center (SCC)
Institut für Wasser und Gewässerentwicklung (IWG)
Institut für Meteorologie und Klimaforschung Atmosphärische Spurengase und Fernerkundung (IMKASF)
Institut für Stochastik (STOCH)
Institut für Photogrammetrie und Fernerkundung (IPF)

Genre

Sonstiges

Beschreibung

Estimation of short-term extremes in air pollution and their drivers
Air pollution is a major problem in cities around the world. Extremely polluted outdoor air is a particular health hazard, even short-term exposure to high pollution levels causes about 1 million premature deaths annually. An early warning would help mitigate these situations but requires high-accuracy prediction. Numerical weather models are able to forecast meteorological conditions with good accuracy. However, the complex interaction between the various pollution sources and factors such as wind (for transport), precipitation (removal of pollutants), and vegetation (source and sink of particles depending on season) poses problems for the prediction of extreme air pollution with weather models.
The aim of this project is to develop a new data-driven approach to accurately predict extremes in urban air pollution from observation data, and to quantify the contributions of the various factors driving these extremes. Therefore, methods from extreme value statistics will be implemented in a machine-learning framework to estimate and predict air pollution extremes. As a starting point, we use Paris as a baseline city, where ML methods were successfully implemented to reproduce specified PM1 concentrations. This model architecture will be adapted and retrained on multi-city data from global air pollution hotspots, enabling generalization beyond the urban area of Paris.
The project lies at the intersection of innovation in mathematics and meteorology. By combining extreme value theory with machine learning, it aims to advance the current state of the art in predicting air pollution extremes.
The doctoral degree will be awarded in either Mathematics or Meteorology, depending on the candidate’s academic background.
Special requirements for applicants:
• Outstanding Master's degree in Mathematics, Statistics, Meteorology or related field.
• Demonstrated interest in the application of mathematical methods to meteorological or environmental phenomena.
• Solid mathematical background.
• High motivation to apply supervised learning methods.
• Excellent command of English, both spoken and written.

Laufzeit (hh:mm:ss)

00:05:24

Serie

KCDS Virtual Open House 2025

Publiziert am

07.11.2025

Fachgebiet

Mathematik

Lizenz

Creative Commons Namensnennung – Weitergabe unter gleichen Bedingungen 4.0 International

Auflösung 1512 x 944 Pixel
Seitenverhältnis 189:118
Audiobitrate 65130 bps
Audio Kanäle 1
Audio Codec aac
Audio Abtastrate 48000 Hz
Gesamtbitrate 692161 bps
Container mov,mp4,m4a,3gp,3g2,mj2
Dauer 323.505000 s
Dateiname DIVA-2025-308_mp4.mp4
Dateigröße 27.989.709 byte
Bildwiederholfrequenz 25
Videobitrate 620991 bps
Video Codec h264

Mediathek-URL

Embed-Code