09: Industrie 4.0, Vorlesung, WS 2018/19, 14.12.2018
Autor
Herausgeber
Beteiligtes Institut
Institut für Anthropomatik und Robotik (IAR)
Genre
Beschreibung
- 0:00:00 Start
- 0:00:38 Graphic Displays of Basic Statistical Descriptions
- 0:05:29 Histogram Analysis
- 0:07:18 Histograms Often Tell More than Boxplots
- 0:08:08 Positively and Negatively Correlated Data
- 0:09:29 Data Visualization
- 0:11:57 PIxel-oriented Visualization Techniques
- 0:13:19 Geometric Projection Visualization Techniques
- 0:15:46 Similarity and Dissimilarity
- 0:17:38 Major Tasks in Data Preprocessing
- 0:21:35 Data Cleaning
- 0:24:41 Incomplete (Missing) Data
- 0:27:15 How to handle Noisy Data?
- 0:30:59 Example Use Case: Predictive Maintenance
- 0:40:50 Personal Lessons Learned
- 0:48:29 Q Learning – Example: Atari Games
- 0:54:54 Machine Learning
- 1:00:10 Example Use Cases: ML in Industry 4.0
- 1:12:54 Supervised Machine Learning Algorithms
- 1:18:18 Unsupervised Machine Learning Algorithms
- 1:25:24 Labeled Data und Unlabeled Data
Laufzeit (hh:mm:ss)
01:27:13
Serie
Industrie 4.0, Vorlesung, WS 2018/19
Publiziert am
14.12.2018
Fachgebiet
Lizenz
Auflösung | 1280 x 720 Pixel |
Seitenverhältnis | 16:9 |
Audiobitrate | 128000 bps |
Audio Kanäle | 2 |
Audio Codec | aac |
Audio Abtastrate | 48000 Hz |
Gesamtbitrate | 934084 bps |
Farbraum | yuv420p |
Container | mov,mp4,m4a,3gp,3g2,mj2 |
Medientyp | video/mp4 |
Dauer | 5233 s |
Dateiname | DIVA-2018-977_hd.mp4 |
Dateigröße | 611.060.746 byte |
Bildwiederholfrequenz | 25 |
Videobitrate | 799986 bps |
Video Codec | h264 |
Embed-Code
Industrie 4.0, Vorlesung, WS 2018/19
Folgen 1-15
von 15