08: Maschinelles Lernen 2 - Fortgeschrittene Verfahren, Vorlesung, SS 2018, 29.06.2018
Author
Editor
Participating institute
                                                                    Institut für Anthropomatik und Robotik (IAR)
                                                            
Genre
Description
- 0:00:00 Start
 - 0:00:57 Motivation - what is intelligence?
 - 0:04:50 Neural control in biology
 - 0:06:39 A global initiative
 - 0:08:57 The Human Brain Project at FZI
 - 0:09:54 Selected literature
 - 0:11:24 Back to biology - the brain
 - 0:13:36 What makes us humans - the cortex
 - 0:15:42 Hierarchical organisation of the cortex
 - 0:17:19 Cortical cells - neurons
 - 0:18:35 How do we learn - a theory
 - 0:23:07 What happens in neurons and synapses ?
 - 0:26:02 Synaptic plasticity enables learning
 - 0:30:39 Reverse-engineering the brain - spike trains
 - 0:33:58 History of artifical neural network models
 - 0:36:33 Abstraction level - what gives rise to the function?
 - 0:37:54 Different abstraction yield different models
 - 0:38:32 Why modeling at spike level?
 - 0:39:53 Modelling at the spike level
 - 0:41:08 Classic spiking neuron model
 - 0:42:11 Popular spiking neuron models
 - 0:43:10 Focus on simplicity
 - 0:44:31 Leaky integrate and fire in action
 - 0:45:56 Focus on realism - Hodgin – Huxley
 - 0:49:25 Focus on matching data - Izhivich Model
 - 0:49:44 A different formulation - The Spike Responce Model
 - 0:50:07 Comparaison between models
 - 0:51:44 Information coding - a spiking network problem
 - 0:52:22 Rate coding- from spiking to analog network
 - 0:53:37 Binary coding - spike train sampling
 - 0:54:43 Gaussian coding - dealing with spatial stimuli
 - 0:56:09 Synchronous coding schemes
 - 0:57:01 Correlations - dealing with spatio-temporal stimuli
 - 0:58:19 I/0- encoding and decoding
 - 0:59:27 What coding does the brain use?
 - 1:00:04 Conclusion
 
Duration (hh:mm:ss)
01:02:09
Series
Maschinelles Lernen 2 - Fortgeschrittene Verfahren, Vorlesung, SS 2018
Published on
05.07.2018
Subject area
License
| Resolution | 1280 x 720 Pixel | 
| Aspect ratio | 16:9 | 
| Audio bitrate | 128000 bps | 
| Audio channels | 2 | 
| Audio Codec | aac | 
| Audio Sample Rate | 48000 Hz | 
| Total Bitrate | 934272 bps | 
| Color Space | yuv420p | 
| Container | mov,mp4,m4a,3gp,3g2,mj2 | 
| Media Type | video/mp4 | 
| Duration | 3729 s | 
| Filename | DIVA-2018-518_hd.mp4 | 
| File Size | 435.504.794 byte | 
| Frame Rate | 25 | 
| Video Bitrate | 800174 bps | 
| Video Codec | h264 | 
Embed Code
Maschinelles Lernen 2 - Fortgeschrittene Verfahren, Vorlesung, SS 2018
                    Episodes 1-11
                        of 11