KIT-Bibliothek

08: Maschinelles Lernen 2 - Fortgeschrittene Verfahren, Vorlesung, SS 2018, 29.06.2018

This audio or video file is copyrighted. Access is only allowed via computers of the Karlsruhe Institute of Technology (KIT).

Author

Camilo Vasquez Tieck

Editor

KIT | Webcast

Participating institute

Institut für Anthropomatik und Robotik (IAR)

Genre

Vorlesung

Description

  • 0:00:00 Start
  • 0:00:57 Motivation - what is intelligence?
  • 0:04:50 Neural control in biology
  • 0:06:39 A global initiative
  • 0:08:57 The Human Brain Project at FZI
  • 0:09:54 Selected literature
  • 0:11:24 Back to biology - the brain
  • 0:13:36 What makes us humans - the cortex
  • 0:15:42 Hierarchical organisation of the cortex
  • 0:17:19 Cortical cells - neurons
  • 0:18:35 How do we learn - a theory
  • 0:23:07 What happens in neurons and synapses ?
  • 0:26:02 Synaptic plasticity enables learning
  • 0:30:39 Reverse-engineering the brain - spike trains
  • 0:33:58 History of artifical neural network models
  • 0:36:33 Abstraction level - what gives rise to the function?
  • 0:37:54 Different abstraction yield different models
  • 0:38:32 Why modeling at spike level?
  • 0:39:53 Modelling at the spike level
  • 0:41:08 Classic spiking neuron model
  • 0:42:11 Popular spiking neuron models
  • 0:43:10 Focus on simplicity
  • 0:44:31 Leaky integrate and fire in action
  • 0:45:56 Focus on realism - Hodgin – Huxley
  • 0:49:25 Focus on matching data - Izhivich Model
  • 0:49:44 A different formulation - The Spike Responce Model
  • 0:50:07 Comparaison between models
  • 0:51:44 Information coding - a spiking network problem
  • 0:52:22 Rate coding- from spiking to analog network
  • 0:53:37 Binary coding - spike train sampling
  • 0:54:43 Gaussian coding - dealing with spatial stimuli
  • 0:56:09 Synchronous coding schemes
  • 0:57:01 Correlations - dealing with spatio-temporal stimuli
  • 0:58:19 I/0- encoding and decoding
  • 0:59:27 What coding does the brain use?
  • 1:00:04 Conclusion

Duration (hh:mm:ss)

01:02:09

Series

Maschinelles Lernen 2 - Fortgeschrittene Verfahren, Vorlesung, SS 2018

Published on

05.07.2018

Subject area

Computer science

License

KITopen Licence

Resolution 1280 x 720 Pixel
Aspect ratio 16:9
Audio bitrate 128000 bps
Audio channels 2
Audio Codec aac
Audio Sample Rate 48000 Hz
Total Bitrate 934272 bps
Color Space yuv420p
Container mov,mp4,m4a,3gp,3g2,mj2
Media Type video/mp4
Duration 3729 s
Filename DIVA-2018-518_hd.mp4
File Size 435.504.794 byte
Frame Rate 25
Video Bitrate 800174 bps
Video Codec h264

Embed Code