
09: Maschinelles Lernen 2 - Fortgeschrittene Verfahren, Vorlesung, SS 2018, 06.07.2018
Author
Editor
Participating institute
Institut für Anthropomatik und Robotik (IAR)
Genre
Description
- 0:00:00 Start
- 0:00:40 Motivation – SPAUN, the most complex artificial brain
- 0:04:19 Let's recap – Neurons anatomy
- 0:08:18 Modelling Neurons
- 0:13:32 Coding of information
- 0:17:13 Is backprop iologically plausible?
- 0:19:49 Synaptic plasticity as learning
- 0:27:33 Formalization of rate-based plasticity rules
- 0:30:26 Other neuromodulators
- 0:36:19 Supervised learning with STDP – Associative learning
- 0:42:33 Spiking networks as kernel methods
- 0:45:53 Liquid State Machines
- 0:49:17 Non linear function approximation I
- 0:53:06 Neuromorphic chips – spiking network
- 0:57:43 Neuromorphic sensors – Silicon retina (DVS)
- 1:02:21 Short-term visual prediction of address events
- 1:06:30 End-to-end robot control - Braitenberg vehicles
- 1:13:36 Braitenberg on the road
Duration (hh:mm:ss)
01:19:59
Series
Maschinelles Lernen 2 - Fortgeschrittene Verfahren, Vorlesung, SS 2018
Published on
11.07.2018
Subject area
License
Resolution | 1280 x 720 Pixel |
Aspect ratio | 16:9 |
Audio bitrate | 128000 bps |
Audio channels | 2 |
Audio Codec | aac |
Audio Sample Rate | 48000 Hz |
Total Bitrate | 934222 bps |
Color Space | yuv420p |
Container | mov,mp4,m4a,3gp,3g2,mj2 |
Media Type | video/mp4 |
Duration | 4799 s |
Filename | DIVA-2018-535_hd.mp4 |
File Size | 560.441.872 byte |
Frame Rate | 25 |
Video Bitrate | 800124 bps |
Video Codec | h264 |
Embed Code
Maschinelles Lernen 2 - Fortgeschrittene Verfahren, Vorlesung, SS 2018
Episodes 1-11
of 11