
23: Grundlagen der Automatischen Spracherkennung, Vorlesung, WS 2017/18, 07.02.2018
Author
Editor
Participating institute
Institut für Anthropomatik und Robotik (IAR)
Genre
Description
- 0:00:00 Starten
- 0:00:52 Inkrementelle Adaption
- 0:03:12 Verschiedenes zu VTLN
- 0:09:00 Maximum Likelihood Linear Regression (MLLR)
- 0:18:25 Welche Adaption unter welchen Bedingungen?
- 0:21:27 Erinnerung MLLR
- 0:28:39 Bottleneck Features
- 0:33:48 Acoustic Model: Neural networks
- 0:41:07 Time-delay neural networks (TDNN)
- 0:47:31 Speaker adaptive neural networks
- 0:55:34 Neural network training: Potential problems?
- 1:05:53 Connectionist temporal classification (CTC)
- 1:23:21 Reaching "human parity"
Duration (hh:mm:ss)
01:32:33
Series
Grundlagen der Automatischen Spracherkennung, Vorlesung, WS 2017/18
Published on
08.02.2018
Subject area
License
Resolution | 1280 x 720 Pixel |
Aspect ratio | 16:9 |
Audio bitrate | 128000 bps |
Audio channels | 2 |
Audio Codec | aac |
Audio Sample Rate | 48000 Hz |
Total Bitrate | 915340 bps |
Color Space | yuv420p |
Container | mov,mp4,m4a,3gp,3g2,mj2 |
Media Type | video/mp4 |
Duration | 5553 s |
Filename | DIVA-2018-167_hd.mp4 |
File Size | 635.358.027 byte |
Frame Rate | 25 |
Video Bitrate | 781243 bps |
Video Codec | h264 |
Media URL
Embed Code
Grundlagen der Automatischen Spracherkennung, Vorlesung, WS 2017/18
Episodes 1-23
of 23