
05: Automotive Vision / Fahrzeugsehen, Vorlesung, SS 2019, 27.05.2019
Author
Participating institute
Fakultät für Maschinenbau (MACH)
Institut für Mess- und Regelungstechnik mit Maschinenlaboratorium (MRT)
Genre
Description
- 0:00:00 Start
- 0:00:10 Correction
- 0:02:07 Chapter 4: Optical Flow
- 0:11:15 Lucas-Kanade Method
- 0:20:44 Limits of linear approximation
- 0:27:46 Iterated Lucas-Kanade Method
- 0:29:05 Aperture Problem
- 0:37:31 Variational Approach
- 0:46:51 Optical Flow and Stereo Vision
- 0:51:20 Sparse Flow
- 0:53:02 Image Based Tracking
- 1:02:39 Example: Kernelized Correlation Filter (KCF)
- 1:09:37 Example: Tracking with Occlusions
- 1:14:31 Tracking in Fog
- 1:16:12 Summary of Chapter 4
- 1:18:00 Chapter 5: Tracking Moving Objects
- 1:18:46 Motion Estimation by Regression
- 1:19:05 Estimation Problem
- 1:21:20 Regression
Duration (hh:mm:ss)
01:26:45
Series
Automotive Vision / Fahrzeugsehen, Vorlesung, SS 2019
Published on
27.05.2019
Subject area
Measurement and control engineering
License
Resolution | 1280 x 720 Pixel |
Aspect ratio | 16:9 |
Audio bitrate | 128000 bps |
Audio channels | 2 |
Audio Codec | aac |
Audio Sample Rate | 48000 Hz |
Total Bitrate | 812486 bps |
Color Space | yuv420p |
Container | mov,mp4,m4a,3gp,3g2,mj2 |
Media Type | video/mp4 |
Duration | 5205 s |
Filename | DIVA-2019-479_hd.mp4 |
File Size | 528.579.487 byte |
Frame Rate | 25 |
Video Bitrate | 678386 bps |
Video Codec | h264 |
Media URL
Embed Code
Automotive Vision / Fahrzeugsehen, Vorlesung, SS 2019
Episodes 1-12
of 12